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Chapter 4

Finite Difference Method for 
Parabolic Equations

Last Session Contents:

1) Numerical Stability
2) Convergence
3) Tridiagonal Matrix Algorithm
4) Implicit Methods
5) Boundary Treatment for Derivative BCs
6) Keller-Box Method
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Numerical Stability

• A concept only defined in iterative problems.

• It necessitates:
Errors, of any type, should not grow in an iterative process.

• Somewhat more difficult than the study of consistency!

• For non-linear problems, the necessary condition for stability is that linear stability 
analysis of them must be stable.

• We will discuss it in detailed later on!

• Now, let’s only take a brief look at “stability of Dufort- Frankel and Explicit scheme”
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Numerical Stability-In Practice

1. Recall the discretized equation of heat conduction using Dufort-Frankel:

• This scheme is unconditionally stable.

2.   Explicit Method is stable if:

3. Central Difference in time:

• This scheme is Unconditionally Unstable.

It limits time step size!
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Numerical Stability-Physical Interpretation

Sometimes numerical instability can be seen as physically unacceptable results!

Let’s consider explicit scheme for discretization of heat equation:

Assume that at � = � we have: ��
� = 0 and ����

� = ����
� = 100℃

In this case, if � >
�

�
temperature at point �

will exceed the temperature of two nearby points!

UNACCEPTABLE!?

The maximum expected temperature must be 100℃

However, when � = 1 it becomes ��
��� = 200℃ ! � = 1
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Convergence

• Generally speaking:
A Consistent and Stable Scheme will converge!

• Convergence:
Solving discretized equation of a PDE subjected to similar boundary and initial
conditions will converge to the exact solution of that PDE provided that grid size
is chosen to be infinitely small.

• Finite Difference Equation is converging if:

• Lax’s Equivalence Theorem:
For a linear well-posed problem, with correct boundary condition, and a Finite 
Difference Approximation of it, Consistency and Stability are necessary and 
sufficient conditions to provide the convergence!

where
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Tridiagonal Systems of Equations

Tx=b 

Using numerical methods, the governing PDEs convert to system of algebraic 
equations as follow:

Large tridiagonal systems arise naturally in a number of problems, especially in 
the numerical solution of differential equations by implicit methods.

When a large system of linear algebraic equations has a special pattern, it is 
usually worthwhile to develop special methods for that unique pattern. 
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Tridiagonal Systems of Equations

One algorithm that deserves special attention is the algorithm for tridiagonal
matrices, often referred to as the Thomas (1949) algorithm.

only a32 in column 2 must be eliminated from row 3
only a43 in column 3 must be eliminated from row 4, etc. 
The eliminated element itself does not need to be calculated.
storing the elimination multipliers, ,  etc, in place of the eliminated

Row 2:
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Hint:
Only the diagonal element in each row is affected by the elimination. 
Elimination in rows 2 to n is accomplished as follows:

Thus, the elimination step involves only 2n multiplicative operations to place T 
in upper triangular form.

Tridiagonal Systems of Equations
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Subsequent elements of the b vector are changed in a similar manner.

is already calculated. Thus, the total process of elimination, 
including the operation on the b vector, requires only 3n multiplicative operations.

Hint:
The nxn tridiagonal matrix T can be stored as an nx3 matrix A' since 
there is no need to store the zeros. 

Column1=Sub-diagonal elements of T

Column2=Diagonal elements of T

Column3=Super-diagonal elements of T

Tridiagonal Systems of Equations
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Example
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Example
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Implicit Finite Difference Approximations

• Backward Difference Scheme

Considering � =
�

��
we have:

or, Grid Stencil

known

BTCS:

How to solve it?!
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Implicit Finite Difference Approximations

BTCS:

• Assume that boundary values are 
zero at both ends.

• This tri-diagonal system can be 
solved by Thomas Algorithm.

Note that:

• BTCS is unconditionally stable.

• Second order in space but first order in time!
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Implicit Finite Difference Approximations

• Crank-Nikolson Scheme

Considering �=
�

��
we have:

or,

Grid Stencil

known×

Crank-Nikolson

15

Implicit Finite Difference Approximations

• Keller-Box Scheme

We can re-write this equation as:     

Grid Stencil

16

Implicit Finite Difference Approximations

• Keller-Box Scheme

We can re-write this equation as:     

Grid Stencil

or,



5

Computational Fluid Dynamics - Prof. V. Esfahanian

17

Implicit Finite Difference Approximations

• Keller-Box Scheme

We can re-write this equation as:     

Grid Stencil

or,

�
��
�
�

���
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Implicit Finite Difference Approximations
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Implicit Finite Difference Approximations

• We can re-write the previous matrix as below where the elements are blocks itself.

• This matrix can be solved using block Thomas algorithm.

• Please note that this matrix should be constructed so that: det	(��) ≠ 0
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Implicit Finite Difference Approximations

• The main features of Keller Box Scheme

1. Only slightly more arithmetic to solve than the Crank-Nikolson method
2. Second order accurate with arbitrary (uniform) � and � spacing
3. Allows very rapid � variation
4. Allows easy programming of the solution of large numbers of coupled equation.

• Steps:

1. Reduce the Equations to a 1st – order system
2. Write difference equations using central differencing.
3.  Linearize the resulting algebraic equation and write them in matrix-vector form
4.   Solve the linear system by the block-tridiagonal elimination method
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Implementation of Boundary Condition

• Implicit schemes mostly end up to this form:

• 1st Method:
Boundary conditions are considered in the equations and matrix-form equation is
solved for � = 2 to � = ���� − 1.

� = 2

Considering BC at �

Considering BC at ����

� = ����
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Implementation of Boundary Condition

• 1st Method:
Boundary conditions are considered in the equations and matrix-form equation is
solved for � = 2 to � = ���� − 1.
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Implementation of Boundary Condition

• 2nd Method:
Let the computer do the calculations!

Note: a slight increase in computation cost, however, gives more flexibility in 
computer code!
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Derivative Boundary Condition

• 1st Method:
Backward difference at the boundary

��

��
= 0

� �, 0 = �(�)

� = 1
��

��
|��� =

3�� − 4���� + ����
2∆�

= 0

�� =
4���� − ����
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• 2st Method:
False boundary

��

��
|��� =

���� − ����
2∆�

= 0

���� = ����
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Numerical Solution of Blasius Equation

• Blasius Equation:

� an arbitrary parameter

• Breaking it up to three first order equations:

26

Numerical Solution of Blasius Equation

• We discretize the equations in �
��
�

�

• Newton Linearization
These equations are non-linear, so, we have to linearize them.

where � denotes the iteration number.
Note: we call the solution converged if �(. ) variables approach to zero!
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Numerical Solution of Blasius Equation

• Substituting these parameters into the first equations yields:

We can rewrite it as:
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Numerical Solution of Blasius Equation

• Finally, it can be written in matrix form as:

Note: This block-tridiagonal matrix can be solved using block Thomas elimination
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Numerical Solution of Blasius Equation

• �, �, � and � blocks are as following:

• Boundary condition implementation also gives:


